Blog Home » Frequently Asked Questions

Blog Home » Frequently Asked Questions

Frequently Asked Questions

Recent FAQs

c Expand All C Collapse All


When your max lamp counts drop below 30,000 during the self test and cannot recover with cleaning, you can send the lamp in for inspection.

If your lamp time remaining is less than 25% then it is best to send the SUNA in for a lamp replacement. We will automatically replace lamps during service if they have less than 30% time remaining, as we want the SUNA to have enough lamp hours to last until your next yearly service.


Category: Service

The Anti-Foulant Device is an expendable device that is installed on each end of the conductivity cell, so that any water that enters the cell is treated. Anti-Foulant Devices are typically used with moored instruments (SBE 16, 16plus, 16plus-IM, 16plus V2, 16plus-IM V2, 37-SM, 37-SMP, 37-SMP-IDO, 37-SMP-ODO, 37-SI, 37-SIP, 37-SIP-IDO, 37-IM, 37-IMP, 37-IMP-IDO, 37-IMP-ODO, HydroCAT, HydroCAT-EP), thermosalinographs (SBE 21 and 45), glider CTDs (Glider Payload CTD), moored profilers (SBE 52-MP), and drifters (SBE 41/41CP Argo float CTDs), and optionally with SBE 19plus, 19plus V2, and 49 profilers.

Anti-Foulant Devices have no effect on the calibration, because they do not affect the geometry of the conductivity cell in any way. The Anti-Foulant Devices are mounted at either end of the conductivity cell. For an in-depth explanation of how Sea-Bird makes the conductivity measurement, see Conductivity Sensors for Moored and Autonomous Operation.

Useful deployment life varies, depending on several factors. We recommend that customers consider more frequent anti-foulant replacement when high biological activity and strong current flow (greater dilution of the anti-foulant concentration) are present. Moored instruments in high growth and strong dilution environments have been known to obtain a few months of quality data, while drifters that operate in non-photic, less turbid deep ocean environments may achieve years of quality data. Experience may be the strongest determining factor in specific deployment environments. Sea-Bird recommends that you keep track of how long the devices have been deployed, to allow you to purchase and replace the devices when needed.

Note that the anti-foulant device does not actually dissolve, so there is no way to visually determine if the anti-foulant device is still effective.

The cost of the anti-foulant devices is small compared to the deployment costs, so we recommend that you replace the devices before each deployment. This will provide the maximum bio-fouling protection, resulting in long-term data quality. 

Shelf Life and Storage: The best way to store Anti-Foulant Devices is in an air-tight, opaque container. The rate of release of anti-foulant is based on saturation of the environment. The anti-foulant will release until the environment is fully saturated (100% saturated) and then it will no longer release any anti-foulant. So if you keep Anti-Foulant Devices sealed well in an air-tight container, theoretically they will stay good for extended periods of time. Exposure to direct sunlight can also affect the release of anti-foulant; we recommend storage in an opaque container.


  • For details, refer to the Material Safety Data Sheet, enclosed with the shipment and available on our MSDS page.
  • Anti-Foulant Devices are not classified by the U.S. DOT or the IATA as hazardous material.
Category: Service

Sea-Bird opened a calibration/service center in Kempten, Germany in 2011, providing duty-free servicing for EU customers. The dedicated technical support staff and calibration technicians were extensively trained by Sea-Bird experts. Calibration cross-referencing between the US and Germany facilities ensures Sea-Bird factory quality and accuracy. The German facility stocks a full range of parts and supplies to support repairs. Details.

Category: Service
Secured By miniOrange